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1. - Introduetion.

Solid helium (*) has recently been used as a pressure-transmitting medium
in experiments to find out how the electrical resistance of metals at low tem-
peratures changes under pressure [1,2]. The method employed was to apply the
pressure at such a temperature that the helium was fluid and then to cool the
bomb, containing the specimen and the helium, under conditions of constant
volume to the desired low temperature. By knowing the equation of state
of solid helium the final pressure could be deduced (+). For the pressures so
far used (up to 3000 atmospheres) the equation of state of the solid as de-
termined experimentally by DuepALE and Smuox [3] is sufficient, but if the
Iressure range is to be extended, more information on the equation of state
15 needed. The recent measurements of STEwART [4] provide the basis for
obtaining this information. The method used to derive the equation of state
and the results obtained will now be briefly described.

2. - The method and assumptions.

The steps in the calculation are as follows:

) @) The first step is to use the isotherm measured at 4.2 °K to deduce
.. the internal energy at absolute zero, as a function of the volume, V.

(*) Unless otherwise stated, the helium referred to is *He.

() It should be possible to invert this procedure and investigate the equation
"!'~t;|u~ of solid 3He by using the electrical resistance of a suitable substance to deter-
"ine the pressure in the solid as a function of temperature and volume.
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(For this purpose 4.2 °K is effectively the absolute zero [3]). The change in
internal energy, AU, in altering the volume from V; to V, at 0 °K is given

by:
Vs

AU0=—fpdV.

141

b) The second step is then to derive from the U,— V curve so obtained
the relationship between the Debye temperature of the solid, 60, and the
volume V. (Experiments [3] have shown that a Debye approximation is quite
good for solid helium). To do this, it is assumed that 0, cc d*U,/dr?, where

" ris the interatomic distance [6]. To evaluate the constant of proportionality,

one value of 0, was taken from specific heat measurements [3].

¢) Thirdly the Lindemann melting formula relating 6, V, and the melting
temperature, T,,, is used to find 7, as a function of V. A value for the Linde-
mann constant for helinm was taken from the work of DuaGDALE and Snion [3],
which had already shown that the Lindemann melting formula was valid for
solid helium throughout the range of their experiments (up to 3000 atmo-
spheres).

d) The last step is to use a Debye-Griineisen model (*) of the solid to

- calculate the pressure corresponding to the volume, ¥, at the melting tem-

perature. This gives the melting curve.

e) As a further check on the calculations, one can calculate the zero
point energy ((9/8)Rf,) and subtract it from the internal energy. This gives
the lattice energy, which may then be compared with that calculated from
a suitable interatomic potential.

3. — The results.

The results are represented in Fig. 1 and 2. Fig. 1 shows the isochores
(lines of constant volume) of solid helium calculated in the manner outlined
above. It also shows the melting curve so derived: for comparison a melting
curve based on experiment is also plotted. MriLLs and GRILLY [6] have measured

(*) By this is meant a solid in which (a) the specific heat at constant volume, for
example, is a function of /7, where 0 depends only on volume, and (b) the temperature
dependence of (', is given by the Debye function. The calorimetric experiments of
Dugdale and Simon showed that this was approximately true of solid helium.
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the melting curve of helium up the 3500 atmospheres; thcy gave their re-
.ults in the form of the following equation:

P +17.80 = 17.315 T'1.885¢

whvré P is the melting pressure in kg/em? corresponding to the temperature
T in °K. Points of this curve have been plotted up to 20 000 atmospheres in
Fiz. 1. Other experimenters [7] have '

made measurements up to higher pres-

sures (up to 9000 atmospheres) but L9 The Lattice Energy
e of Solid Heli
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stent with the equation given by MiLrLs and GrILLY. It is seen that the
agreement between the extrapolated experimental curve and the melting
curve deduced, as described above, from Stewart’s experiments is very close
indeed.

Fig. 2 shows the lattice energy of solid helium calculated as described to-
zether with London’s calculation of the lattice energy assuming a Slater-
Kirkwood potential [8]. The agreement for large molar volumes is satisfactory:
4t the minimum of energy and at molar volumes smaller than this the agree-
ment is not good. It is of course known that the Slater-Kirkwood potential
does not predict altogether correctly the properties of the gas phase [9]; more-
over, the values of A, which have been taken were chosen to represent the
low temperature specific heats [3] reasonably well and they may differ signi-
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ficantly from the values of 0., which strictly are needed for calculating the
zero point energy [10]. For completeness, the Debye temperature, the Griin-
eisen parameter y (y=—dlog0/dlogV), and the melting temperature as
calculated for various values of the volume are listed in Table I.

TaBLe 1. — The Debye temperature, the Griineisen y and melting temperature of solid
heliwm calculated for various values of volume.

VvV (em®) fp (°K) Y Tn (°K)
16 ‘ 44 2.71 4.9
15 52 2.49 6.6
14 62 2.31 8.8
13 3 2.17 11.7
12 86 2.06 15.5
11 102 1.96 20.8
10 123 1.87 28.0

9 149 1.8 38.5
8 184 1.74 53.9
7 - 230 1.68 ' 711
6.5 261 1.65 94.5

4. — Conclusions.

From the remarkably close agreement between the extrapolated experi-
mental melting curve and that calculated by the methods outlined in this
paper, one may draw the following conclusions:

a) that the calculated melting curve and isochores of the solid can be
accepted with considerable confidence;

b) that in spite of the large zero point motion of the atoms composing
it, a relatively simple model of solid helium is sufficient to account quite well
for its properties provided that the effect of the zero point energy is taken
into account at the very outset of the calculations (*); and

c¢) that the Lindemann melting formula appears to be valid over an

enormous region of the melting curve, a fact which deserves close theoretical
attention.

(*) To carry out the calculation from first principles, the U,-V relationship should
be derived from the interatomic potential. This has already been attempted with
some success [11] but the difficulty is that a really satisfactory theoretical interato-
mic potential for helium does not yet exist.
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The author is much indebted to Miss D. SoUBLIERE for carrying out the
caleulations involved in this paper and to Dr. D. K. C. MacDonNaLDp for
his helpful comments on the manuseript.
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INTERVENTI E DISCUSSIONIT

-— C. DomB:

Dr. DuGpALE’s observation that the 6 values used in estimating the Linde mann
constant € need to be revised would mean a far smaller variation of ¢ with A* than
indicated in my paper. It may help to account for the apparent discrepancy noted bet-
ween solid hydrogen and solid helium.
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